Acta Crystallographica Section E

Structure Reports Online

3-(4-tert-Butyl-2,6-dimethyl-3,5-dinitrobenzoyl)-1,1-bis(methylsulfanyl)prop-2-en-1-one

ISSN 1600-5368

Jiang-Peng Liao, ${ }^{\text {a,b }}$ Ti Zhang, ${ }^{\text {a,b }}$ Chu-Yi Yu ${ }^{\mathrm{a} *}$ and Zhi-Tang Huang ${ }^{\text {a* }}$
${ }^{\text {a }}$ Beijing National Laboratory for Molecular Science (BNLMS), Laboratory for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and ${ }^{\mathbf{b}}$ Graduate University of Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Correspondence e-mail: yucy@iccas.ac.cn, huangzt@public.bta.net.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.115$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The bond lengths and molecular conformation of the title compound, $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$, can be correlated with electronic conjugation and steric effects.

Comment

As precursors for the synthesis of heterocyclic ketene aminals (HKAs) (Huang \& Wang, 1994, 2002), aroyl-substituted ketene dimethylmercaptals have been widely used to synthesize a variety of heterocycles. The title compound, (I) (Fig. 1), was obtained from the one-pot reaction of 1-(4-tert-butyl-2,6-dimethyl-3,5-dinitrophenyl)ethanone, carbon disulfide and methyl iodide.

(I)

The geometrical parameters for (I) are normal. The length of the $\mathrm{C} 13-\mathrm{C} 14$ bond is shorter than that of a normal $\mathrm{C}-\mathrm{C}$ single bond, owing to the conjugation involving the adjacent $\mathrm{C} 13=\mathrm{O} 5$ and $\mathrm{C} 14=\mathrm{C} 15$ bonds (Table 1). The lengths of the C15-S1 and C15-S2 bonds are shorter than that of a normal $\mathrm{C}-\mathrm{S}$ single bond for the same reason. The C13/C14/C15/O5/ $\mathrm{S} 1 / \mathrm{S} 2$ assembly is almost planar [r.m.s. deviation from the mean plane of $0.0071(16) \AA$] and close to perpendicular to the benzene ring mean plane [dihedral angle $=89.37(6)^{\circ}$]. Both nitro groups are almost perpendicular to the benzene ring plane, probably for steric reasons to avoid unfavourable interactions with the C3 and C12 methyl groups and the C6 tert-butyl group.

Experimental

1-(4-tert-Butyl-2,6-dimethyl-3,5-dinitrophenyl)ethanone $\quad(58.86 \mathrm{~g}$, $0.2 \mathrm{~mol})$ was added dropwise to a suspension of sodium hydride (12 g , $80 \%, 0.4 \mathrm{~mol})$ in toluene (200 ml) and dimethylformamide (50 ml). Carbon disulfide ($15.23 \mathrm{~g}, 0.2 \mathrm{~mol}$) was then added dropwise to the reaction mixture slowly. After stirring for 2 h , methyl iodide (56.78 g , 0.4 mol) was added dropwise while the reaction flask was cooled in an ice bath. When thin-layer chromatography indicated the reaction was complete, the mixture was poured into ice-water and the organic phase was separated from the aqueous phase. The aqueous phase was extracted with ethyl acetate $(3 \times 50 \mathrm{ml})$. The combined organic phases were dried over anhydrous sodium sulfate. After partial removal of the solvents, the title compound was crystallized from the solution: yellow needles of (I) were collected by filtration and washed with petroleum ether (Huang \& Liu, 1989). (yield $51.81 \mathrm{~g}, 65 \%$; m.p.

Received 7 September 2006
Accepted 13 September 2006

Figure 1
The molecular structure of (I), showing 50\% displacement ellipoids (arbitrary spheres for the H atoms).

495-496 K). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.04(s, 1 \mathrm{H},=\mathrm{CH}), 2.52(s, 3 \mathrm{H}$, $\left.\mathrm{SCH}_{3}\right), 2.47\left(s, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.12\left(s, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.44\left(s, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ESI-MS: $m / z 39\left(M^{+}+1\right)$; Analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$: C 51.24, H 5.56, N 7.03%; found: C 50.87, H 5.59, N 7.03%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$
$M_{r}=398.49$
Triclinic, $P \overline{1}$
$a=8.657(2) \AA$
$b=10.193(3) \AA$
$c=12.561(3) \AA$
$\alpha=67.272(4)^{\circ}$
$\beta=71.840(4)^{\circ}$
$\gamma=82.758(4)^{\circ}$

Data collection

Bruker SMART CCD	4980 measured reflections
\quad diffractometer	3403 independent reflections
ω scans	2092 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.025$
$\quad(S A D A B S ;$ Bruker, 2002)	$\theta_{\max }=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.115$
$S=1.07$
3403 reflections
242 parameters

H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

C15-S1	$1.740(3)$	C13-C14	$1.436(3)$
C15-S2	$1.753(3)$	C14-C15	$1.348(4)$

The H atoms were located in difference maps, repositioned in idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

We thank Dr Hai-Bing Song of Nankai University for collecting the intensity data.

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, Z.-T. \& Liu, Z.-R. (1989). Synth. Commun. 19, 943-958.
Huang, Z.-T. \& Wang, M.-X. (1994). Heterocycles. 37, 1233-1262.
Huang, Z.-T. \& Wang, M.-X. (2002). Prog. Nat. Sci. 12, 249-257.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

